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A new multi-domain pseudospectral method is developed to
simulate viscous compressible flow in a quasi-one-dimensional nozzle.
“The flow variables at the interface points are advanced in time using the
same second-order time marching scheme as the interior points. The
spatial derivatives of the inviscid flux vector are evaluated at the inter-
face points using a spectrally accurate modification of Van Leer's flux
vector splitting method. The derivatives of the viscous flux vector are
evaluated alternately from neighboring sub-domains. The scheme is
found to be spectrally accurate. Shock waves are resolved without
oscillations for moderate Reynolds Numbers.  © 1593 Academic Press, Inc.

1. INTRODUCTION

Pseudospectral methods are accurate numerical solution
techniques for fluid flows which exhibit exponential
convergence for smooth flow fields [ 1, 27]. Advantages such
as improved CPU run times, application to complex
geometries, and implementation on parallel computers can
be realized by dividing the pseudospectral computational
domain into smaller regions [3-6]. Pseudospectral
methods, however, are currently not widely applied to
simulations of compressible fluid flows because of the dif-
ficulties encountered in treating shock waves [7]. Shocks
can be captured by incorporating an artificial viscosity
similar to that of finite difference schemes into the solution
(81 This treatment, however, tends to deteriorate the spec-
tral accuracy of the solution, A 1987 report by Macaraeg,
Streett, and Hussaini [9] showed that multi-domain
pseudospectral methods can be used to resolve shock waves
without adding non-physical artificial viscosity. These
shock waves are not discontinuities but rather regions of
rapid change whose width depends on the Reynolds num-
ber. The shock wave location can be found adaptively using
methods similar to that of Ref. [107}. Macaraeg et al. further
showed that the presence of implicit or explicit artificial
viscosity in numerical schemes can adversely affect the
physical solution. Simulations free of the inaccuracies
caused by artificial viscosity can be used to resclve not only
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chemically reacting flows but can also be used to accurately
study compressible turbulence [11,12]. A flexible multi-
domain pseudospectral methods can be used to extend
these compressible viscous flow simulations to practical
engineering geometries.

This paper reiterates usefulness of pseudospectral
methods for resolving viscous shocks. An efficient multi-
domain method for the Navier-Stokes equations is
presented which reduces the number of operations needed
to treat the inviscid and viscous flux vectors at interface
points. The scheme in Ref. {4] imposes continuity of the
state variables and flux vector at the interface points. This
interface treatment results in a system of equations for the
flow variables which can be large if there are a large
number of sub-demains. Other multi-domain schemes for
compressible flows do not address the viscous flux term in
the Navier-Stokes equations. The present multi-domain
scheme is used to solve the quasi-one-dimensional
Navier—Stokes equations for transonic flows in a nozzle. A
second-order time marching method is used to advance the
state variables at interior and interface points. The spatiai
derivatives at the interface points are evaluated using the
flux vector splitting technique of Van Leer [13] for the
inviscid flux vector and a variation of the alternating
domain method of Hanley [6] for the viscous flux vector.
The Van Leer split admits a smooth transition of the
inviscid flux vector across stagnation and sonic points,
Efficiency of the method is enhanced by using the split flux
vector to evaluate the derivative only at the interface points.
The derivatives at the interior points are evaluated using the
original unsplit flux vector. This method is similar to multi-
domain techniques found in [ 5, 147 which are akin to the
methods of characteristics. The operational count for
cvaluating the derivatives of the viscous flux vector at the
interface points is negligible. The overall multi-domain
scheme for the Navier-Stokes equations is efficient and
simple to program and is directly transferable to two-
and three-dimensional problems. Results show that the
pseudospectral multi-domain scheme can resolve sharp
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shocks using the physical viscosity of the problem. The
multi-domain treatment produces exponentially convergent
results.

2. GOVERNING EQUATIONS

The governing equation for quasi-one-dimensional
compressible viscous flows are given by
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where E=¢ +1°/2, H,=E+ p/p, ¢,, and ¢, is the specific
heats at constant volume and pressure, and A4(x) is the
cross-sectional area of the nozzle. The coefficient of viscosity
and thermal conductivity are given according to the power

law
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where for air n = 0.666. A Prandti number given by

P, =puc,/k

of 0.75 is used for the computations. The internal energy is
given by

PATRICK HANLEY

Equations (1) are subject to characteristic inflow and out-
flow boundary conditions. In addition to the characteristic
boundary conditions, the back pressure is specified at the
nozzie exit. At the nozzle inlet, the total pressure and
enthalpy are specified.

3. NUMERICAL METHOD

Equations (1) arc integrated in time using a second-order
accurate two-step time marching scheme. The computa-
tional domain is divided into a number of smaller regions.
Each region is joined by 2 common interface point. The flow
variables at the domain interface points are advanced in
time using the same second-order time marching method as
the interior points, However, the derivatives at the interface
points are modified to include physicaily correct informa-
tion from the sub-domains to the right and lefi. The
following sections give details of the numerical method.

3.1, Time Marching Scheme

The dependent variables are advanced in time using the
following two-step time marching method
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The following section describes the scheme for evaiuating
the spatial derivatives.

3.2, Spatial Derivatives

The computational domain can be divided into a number
of smailer regions or zones. Neighboring sub-domains share
a common interface point. Each of these regions can be
mapped to the interval —1 < & < 1 which can be discretized
by a Chebyshev polynomial on Gauss—Labatto points given

by
nj
;= Cos (ﬁ)

The Chebyshev pseudospectrai derivative operator D for
each of the sub-domains is a full matrix. The elements of the
matrix are given in Refl. [1] as

(3)
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where x; is given by Eq.(3) and ¢;=2if j=0 or j=N,
otherwise ¢;=1. For the computations, D is further
modified so that x; refers to the leftmost point while x,
refers to the rightmost point of the sub-domain. The
modification also takes into account the linear transforma-
tion. Both D and N can vary for one domain to the next.

Approximating first derivatives at all points in a sub-
domain with N elements will require N? operations. A fast
Fourier transform can be used to reduce the operational
count to Nlog N; however, the technique is complex to
program and no significant advantage is realized until N
approaches a large number [ 15]. The matrix multiplication
is used in this paper because the number of modes in the
pseudospectral sum will be relatively small, Evaluating the
spatial derivatives at the interior and interface points
requires different treatments which are covered in the next
sections.

3.2.1. Interior Points

The spatial derivatives in Eq. (2) can be evaluated at all
time levels in each sub-domain using

oF,

=T dufle) (5)
and
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3.2.2. Interface Points

The derivatives of the inviscid and viscous flux vectors are
treated separately at the interface points. Figure 1 shows
two neighboring sub-domains with a common interface
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FIG. 1. Two neighboring pseudospectral domains.

point. The subscripts left, right, interface refer to quantities
in the left, right sub-domains and the interface point, respec-
tively.

Inviscid Fluxes. TFirst derivatives can be computed at
interface points using the technique of flux-vector splitting
described in [13] for the inviscid flux at all time levels. The
flux vector at the interface points can be split into two parts,
F* and F~, which represent right and left running waves,
The derivative dF/dx (for a flow [rom left to right) can be
represented at the interface peint of two neighboring
domains as

(=5 (55)
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where F* is given in [13] as
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and

fi=%pa{3(M11)}? (11}
ITM>1then F*=Fand F~ =0.

The flux vector splitting is used to compute the first
derivative of F only at the interface points. It is still
necessary to compute the split fluxes at all interior points to
evaluate the pseudospectral derivative. The operational
count for computing dF/dx at the interface point is about
the same as an interior point, ie., O{N).

Viscous Fluxes. Reference [67] was successful in using an
alternating domain technigue for computing second
derivatives at the domain interface. It was shownin [16] by
numerical experiments that eigenvalues of this second
derivative operator for two domains (with equal and
unequal numbers of points} were negative. Negative eigen-
values of the derivative operator are necessary for the tem-
poral stability of a numerical scheme. The scheme was also
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found to be exponentially convergent for the one-dimen-
sional heat equation. A variation of this technique is used
below to compute the derivative of the viscous flux at the
interface points.

For the predictor step, first compute u, and E, in all of
the sub-domains from Eqgs. (8) and (7). Assign the value
of (u (xy))en and (E.(x4))er of each sub-domain to the

interface point so that
o= ( T i)} (12)
i telt

N
2 d
N
nw—(z -). (13)
f=0 lefi

The derivative of the viscous flux can then be computed
using
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For the corrector step of Eq. (2) first evaluate u_and E_ in
all domains while at the interface points let
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The derivative of the viscous flux can then be computed
using

N
(Gx)inlerface = (Gx(xﬂ])righl = ( Z deG(xj)) (17)
=0 Teft
The operational count for computing éG/éx at the interface
is the same as an interior point.

4. RESULTS

Results are obtained for a converging diverging nozzle
with the cross-sectional area given by
A(x)=1—0.8x(1—x), 0<x<g 1.

The equations are integrated in time from stagnation condi-
tions to the final steady state. The back pressure to stagna-
tion pressure ratio is set to (.78 This produces subsonic
flow in the converging section of the nozzle with supersonic
flow past the throat in the diverging section terminating

with a shock at about x =0.77 and subsonic flow at the exit.
A total of 12 sub-domains is used to resolve the flow. The
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FIG. 2. Mach number in nozzle.

sub-domain interface points are located at x=0.5, (.65,
0.70, 0.72, 0.74, 0.75, 0.76, 0.77, 0.78, 0.79, 0.80. Numerical
experiments are performed for 3, 7, 9, and 11 points per sub-
domain. A fine grid is used for a relatively large area around
the final position of the shock to capture the evolving shock
wave. An adaptive scheme similar to that of Ref. {10 or 17]
can be used to improve the efficiency of the computations by
automaticaily locating the shock position. In addition, a
standard MacCormack scheme is used to solve Eq. (1) in
order to compare the pseudospectral results. Selutions are
obtained for 801, 1601, and 3201 evenly spaced points. All
the computations are performed for a Reynolds number of
2000 (based on stagnation sound speed and channel length).
Figure 2 shows a comparison of the computed solution with
the solution obtained by using exact inviscid theory [18].
The computed solution is in good agreement with the
inviscid calculations even for this relatively low Reynolds
number example. Figure 3 is a plot of the nine points/
domain solution compared with the 1601 equally spaced
points MacCormack’s solution in the shock layer region.
The figure shows that the multi-domain technique is in
excellent agreement with the finite difference method and is
proof that the multi-domain scheme works in this viscous
dominated region of the flow.
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FIG. 3. Mach number in thin viscous layer.
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FIG. 4. Total pressure in nozzle normalized with respect to the
ambient total pressure,

Figure 4 shows the total pressure using the pseudospec-
tral scheme {nine poeints/domain) compared to the exact
inviscid theory. Again, there is good agreement between the
inviscid and viscous theory for a Reynolds Number of 2000.
Figure 5 shows an enlargement of the viscous region
showing the results of the pseudospectral scheme and the
MacCormack’s method. Both solutions exhibit excellent
agreement and show an undershoot in the total pressure.
This non-physical behavior was also observed by Morduchow
et al. {197 in an analytical study of one-dimensional viscous
compressible flows.

A spatial convergence study is performed for the pseudo-
spectral multi-domain method for the transonic nozzle.
The 3201 points MacCormack’s method is used as the
“exact” solution. This results in 96 points in the viscous
dominated region between x = 0.7% and x = 0.78. Figure 6 is
a plot of the convergence of the maximum and L, errors
with 5, 7, 9, and 11 points in each sub-domain. The straight
lines in the graph imply exponential convergence and is
evidence of the integrity of the sub-domain technique in
both the inviscid and viscous dominated regions of the flow.
Figure 6 also shows that the magnitude of the convergence
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FIG. 5. Total pressure in viscous layer normalized with respect to the
ambient total pressure.
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FIG. 6. Convergence of the multi-domain method for Mach number
and pressure and total pressure.

slope for the pseudospectral method begins to decrease
between the nine points/sub-domain and 11 points/sub-
domain points. This is because the 11 point/sub-domain
pseudospectral solution is about the same order of accuracy
as the 3201 point MacCormack’s solution. Figure 7 is a piot
of the convergence of MacCormack method for 801 and
1601 points. The plot shows that the error decreases less
than an order of magnitude as the total number of points is
doubled. However, the error associated with the
pseudospectral method decreases by about an order of
magnitude when the number of points in each sub-domain
is increased by two. Figures 6 and 7 show that the
nine points/sub-domain pseudospectral method provides
about the same order of accuracy as the 160! points
MacCormack’s method. The maximum error for both
methods occurs in the viscous dominated region located at
0.76 £ x<0.78.

Since the integration schemes (for the MacCormack and
pseudospectral methods) are time accurate, all solutions
converge at about the same physical times (about 0.5s).
However, the number of iterations required for convergence
can vary for each computation, This is because the maxi-
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FIG. 7. Convergence of the MacCormack’s method for Mach number
and pressure and total pressure.
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TABLE]

Multi-domain Pseudospectral Method (12 Sub-domains)

# Points/domain Time step CPU time/iteration CPU for convergence

7 2x1077s 6798 x 105 283,25 min
1%1077s 9076 x 10735 756,33 min
11 Sx 107 %s 115x 10725 1,916.67 min

mum global allowable time step for stability was used to
advance the computations. This time was determined
by manually dividing the time step by two until a stable
solution was reached. Tables I and II show the statistics
for the computations for both the pseudospectral and
MacCormack’s methods on a RISC 6000/320H computer.

Since the accuracy of the nine points/domain and the
1601 points MacCormack solutions are comparable, the
results in Tables T and II suggest that the pseudospectral
scheme decreases the computation time by a factor of seven.
As more resolution is required in the viscous shock layer,
the pseudospectral method will be more efficient compared
to MacCormack’s method. The 3201 point MacCormack
solution would require about 32 days of computation if
ambient initial conditions were used. To speed up the com-
putations, the converged nine peoints/domain pseudospec-
tral solution was projected to the 320! points using spectral
interpolation. An additional 10% iterations was performed to
obtain the steady solution.

The CPU usage is extensive for the transonic nozzle com-
putation, This is because the shock was resolved using a fine
grid and a small time step was required for stability. The
extensive CPU usage is expected in direct turbulent simula-
tions, where the fine turbulent scales are about the same
order of magnitude as the shock thickness. In practical
engineering applications, it is advisable to use shock
capturing or shock fitting [20] in conjunction with the
domain decomposition scheme for flows with shock waves.

5. CONCLUSIONS

An efficient multi-domain scheme is devised for viscous
compressible flows. The scheme avoids extra equations and

TABLEII
MacCormack’s Method

Number of points Time step CPU time/iteration CPU for convergence

801 I1x107%s 6735x10%s 561.25 min
1601 2x1077s 1387107 's 5,780.17 min
3201 §x107%s 2817x10"'s  46,950.00 min (projected)
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conditions to solve for the unknowns at the interface points.
The method is directly applicable to two- and three-dimen-
sional problems if aligning sub-domains are used. For
general complex bodies nonaligned domains can be useful.
Spectral interpolants can be used for nonaligned domains.
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